

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1002494110

COMBINED SCIENCE

5129/22

Paper 2

October/November 2021

2 hours 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 24 pages. Any blank pages are indicated.

DC (MB/JG) 212000/2 © UCLES 2021

[Turn over

1 Table 1.1 shows the atomic structure of six different elements **U–Z**.

The letters are not the chemical symbols of the elements.

Table 1.1

	U	V	W	Х	Υ	Z
nucleon number	3	10	14	15	19	23
proton number	2	5	7	7	9	11
total number of electrons	2	5	7	7	9	11

Using the letters in Table 1.1, complete the following sentences.

Each letter may be used once, more than once or not at all.

(a)	The element in period 3 of the Periodic Table is	[1]
(b)	The element in Group VII of the Periodic Table is	[1]
(c)	The element that forms a stable ion with a single negative charge is	[1]
(d)	The two atoms that are isotopes of the same element are and	[1]
(e)	The atom which does not react with other elements is	[1]
		[Total: 5]

2 Draw **one** straight line to link each part of the male or female reproductive system to the function it carries out.

part of reproductive system	function
	where fertilisation occurs
ovary	
	produces sperm
uterus	
	produces liquid to activate sperm
testes	
	where zygote develops
oviduct	
	produces egg cells

[4]

3 Fig. 3.1 shows a piece of apparatus that is used to measure a period of time.

It takes a fixed period of time for all of the grains of sand to fall from the top bulb into the bottom bulb.

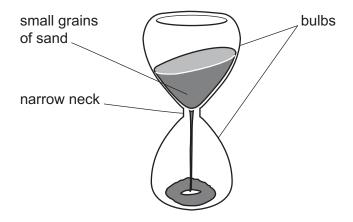


Fig. 3.1

The grains of sand fall from the top bulb into the bottom bulb through the narrow neck.

(a)	Describe how to determine the fixed period of time measured by this apparatus.
	[3

(b) The grains of sand have an average diameter of approximately $6.3 \times 10^{-5} \, \text{m}$.

Some instruments that can be used to measure length are described in the list:

- a micrometer that measures to the nearest 0.01 mm
- a ruler that measures to the nearest 1 mm
- vernier calipers that measure to the nearest 0.05 mm.

State which instrument from the list is the most suitable to use to measure the diameter of the grains of sand and give a reason for your answer.

instrument	
reason	
	[2]

[Total: 5]

4 Complete the sentences about hydrocarbons and homologous series using words or phrases from the list.

carbon dioxide

carbon monoxide

Each word or phrase may be used once, more than once or not at all.

chemical

addition

	double	general	molecular	physical	saturated			
		single	substitution	unsaturated				
Member	s of the same	homologous	series have the san	ne	formula			
and hav	e similar		properti	ies.				
Alkanes	are described	d as		. hydrocarbons.				
Alkenes	Alkenes undergo reactions because they contain							
a carbor	n to carbon		bond					
Both alk	enes and alka	anes burn in a	limited supply of ox	kygen to produc	е			
		and v	water.		103			
					[6]			

5 Complete the sentences about dental decay using words from the list.

Each word or phrase may be used once, more than once or not at all.

acid	cuticle dig		stion	enamel	
ingestion	respira	ation	sugar	urea	

Dental decay is caused by bacteria in the mouth.

Bacteria usein food as a source of energy.

This process is called

The bacteria release as a waste product from this process.

This chemical dissolves the of the teeth.

[4]

6 Fig. 6.1 shows the speed–time graph for a car.

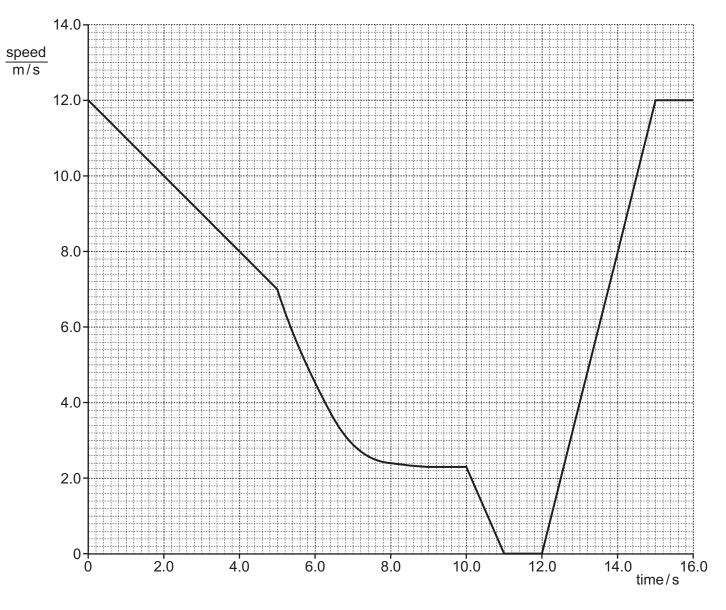


Fig. 6.1

At 0 s, the car is moving at its maximum speed.

The car has a speed of $0\,\text{m/s}$ between 11.0s and 12.0s.

(a)	Use the data 0s and 5.0s.	in the grap	h in Fig. (6.1 to	describe	the	change	in speed	of the	car	between
											[2]

	(b)	Use	e Fig. 6.1 to complete these sentences:	
		Nor	n-constant deceleration occurs betweens ands	s.
		The	e change in speed during this time is m/s.	
		Afte	er the car is stationary, it takess to return to its maximum speed.	[3]
				[Total: 5]
7	Lith	ium ı	nitrate decomposes on heating.	
	The	equ	ation for the reaction is shown.	
			$4LiNO_3 \longrightarrow 2Li_2O + 4NO_2 + O_2$	
	The	rela	tive molecular mass, $M_{\rm r}$, of lithium nitrate is 69.	
	[A _r :	Li, 7	'; N, 14; O, 16]	
	(a)	(i)	Calculate the relative molecular mass, $M_{\rm r}$, of lithium oxide, ${\rm Li_2O}$.	
				[1]
		(ii)	Complete the following sentences.	
			276 g of lithium nitrate producesg of lithium oxide	
			andg of oxygen.	
			6.9 g of lithium nitrate producesg of lithium oxide.	[3]
	(b)	Lith	nium is placed at the top of Group I of the Periodic Table.	
		(i)	Lithium (Li) reacts with chlorine ($\mathrm{C}\mathit{l}_{2}$) to produce lithium chloride.	
			Deduce the balanced equation for the reaction between lithium and chlorine.	
				[1]
		(ii)	State the trend in reactivity of the Group I elements with chlorine as the descended.	group is
				[1]
				[Total: 6]

8 Fig. 8.1 shows a seed during the process of germination.

The young radicle has already emerged.

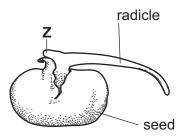


Fig. 8.1

(a)	(i)	Name the structure that will develop from Z shown on Fig. 8.1.	
			[1
	(ii)	Name the part of the plant embryo that remains covered by the testa.	
			[1
(b)	See	eds need certain environmental conditions before they can germinate.	
	Sor	me environmental conditions are shown in Table 8.1.	
	Cor	mplete Table 8.1 by placing a tick (✔) against each condition necessary for germination	١.

Table 8.1

environmental condition	necessary for germination
carbon dioxide	
light	
oxygen	
water	

[2]

(c) In an investigation, students examine the effect of pH on the germination of one type of seed.

Their results are shown in Fig. 8.2.

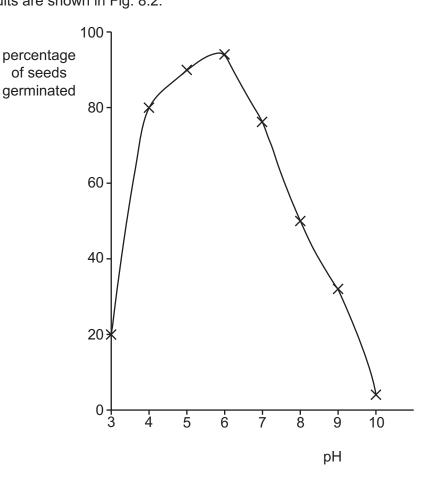


Fig. 8.2

State **two** conclusions that can be drawn from Fig. 8.2 about the effect of pH on the germination of these seeds.

	2
	[2]
d)	Explain why germinated seeds become unhealthy if they cannot obtain nitrogen-containing ions from the soil.

[Total: 7]

9 A mobile is a type of decoration which hangs from a ceiling.

Fig. 9.1 shows part of a mobile.

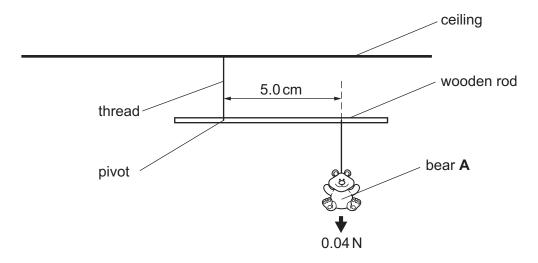


Fig. 9.1

A wooden rod is attached to the ceiling by a piece of thread.

The rod is free to pivot about the point where the thread is attached.

(a) Calculate the moment of bear A about the pivot.

Show your working.

State the unit.

moment = unit [3]

(b) Fig. 9.2 shows the complete mobile.

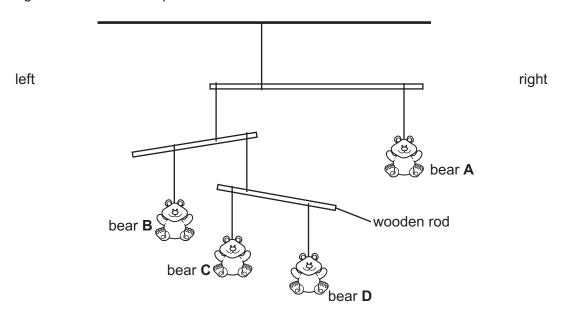


Fig. 9.2

Two of the wooden rods are **not** horizontal.

Put ticks (\checkmark) in Table 9.1 to show which way, if at all, the bears should be moved so that all the wooden rods are horizontal.

Table 9.1

bear	stay where it is	move to the left	move to the right
Α			
В			
С			
D			

[3]

[Total: 6]

10 Calcium reacts with water to form aqueous calcium hydroxide (limewater).

An aqueous solution of calcium hydroxide has a pH8.

Some reactions of calcium and aqueous calcium hydroxide are shown in Fig. 10.1.

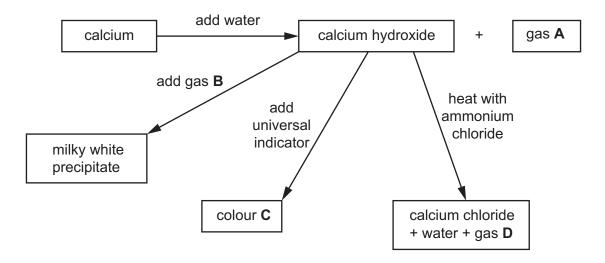


Fig. 10.1

(a)	Identify:		
	gas A		
	gas B		
	colour C		
	gas D .		[4
(b)	State the typ	pe of bonding in calcium chloride.	יין
	Give a reaso	on for your answer.	
	type of bond	ling	
	reason		
			[2

[Total: 6]

11 (a) Table 11.1 contains sentences comparing veins with arteries.

Complete Table 11.1 by placing a tick (\checkmark) in the box next to each sentence which is true.

An example has been done for you.

Table 11.1

comparison of veins with arteries							
A vein has less muscle in its wall than an artery.	1						
The lumen (cavity containing blood) is smaller in a vein.							
A vein contains frequent valves.							
Veins carry blood away from the heart.							
Veins usually carry deoxygenated blood.							

 12 Table 12.1 shows the resistance of a length of copper wire at different temperatures.

Table 12.1

temperature/°C	50	100	150	200
resistance/ Ω	1.14	1.37	1.59	1.81

(a)	State why a length of copper wire can be used as a thermometer.
	[1]
(b)	Estimate the resistance of the wire at 175 °C.
	resistance = Ω [1]
(c)	The wire is part of an electrical circuit.
	State two quantities that need to be measured to determine the resistance of the copper wire.
	1
	2
	[2]
	[Total: 4]

13 The boxes on the left hand side of Fig. 13.1 show some substances.

The boxes on the right hand side show some uses and properties of substances.

Draw **one** line from each substance box to link the substance with its use or property.

substance use or property contains two elements required for plant growth calcium carbonate used to reduce the acidity of soil copper(II) oxide reacts with dilute hydrochloric acid to produce a salt and hydrogen only potassium nitrate turns colourless when reacted with ethene bromine used to make water fit to drink chlorine reacts with dilute hydrochloric acid to produce a salt and water only

Fig. 13.1

[5]

14	(a)	Complete the definition of a drug by inserting appropriate words in the spaces.	
		A drug is an administered substance which modifies or	
		affects the reactions in the body.	[2]
	(b)	Alcohol is a drug.	
		State two effects of the long-term excessive consumption of alcohol.	
		1	
		2	
			 [2]
	(c)	The liver is responsible for destroying alcohol in the body.	[4]
		(i) Suggest how alcohol is transported to the liver.	
			[1]
		(ii) State another function carried out by the liver.	
			[1]

[Total: 6]

15 Fig. 15.1 shows the distribution of the positive charges on a metal sphere.

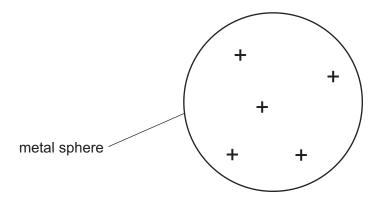


Fig. 15.1

(a) The overall charge on the sphere is neutral.

On Fig. 15.1, draw the negative charges. [2]

(b) A negatively charged rod is placed next to the sphere as shown in Fig. 15.2.

On Fig. 15.2, draw the new arrangement of the negative charges on the sphere. [1]

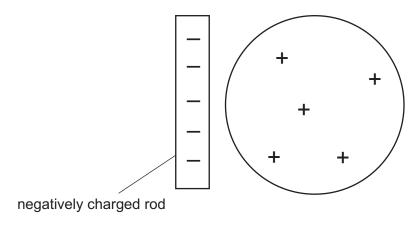


Fig. 15.2

(c) Explain what is meant by the term 'one coulomb per second'.

.....[3

[Total: 6]

16 The three states of matter are shown in Fig. 16.1.

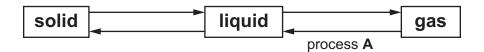


Fig. 16.1

(a)	State the name of process A .
	[1]
(b)	Describe how the kinetic energy and the bunching of the particles of a gas change during process A .
	[2]
	[Total: 3]

17 (a) Fig. 17.1 shows a diagram of the alimentary canal.

Name the structures W, X, Y and Z.

Write your answers on Fig. 17.1.

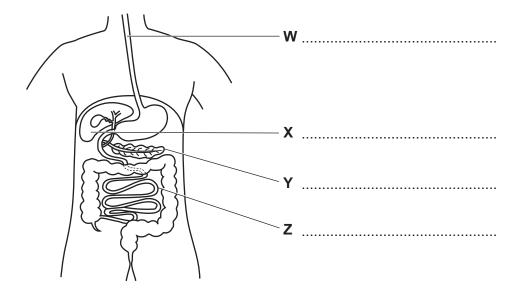


Fig. 17.1

١	4	
	-	4

Describe peristalsis and state its function in digestion.
[2
[Total: 6

18 The gas carbon dioxide absorbs radiation with a wavelength of 15×10^{-6} m.

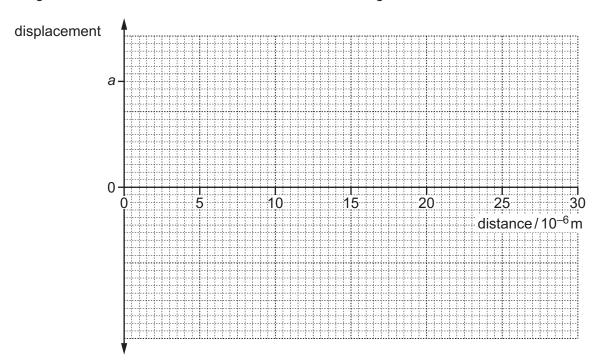


Fig. 18.1

- (a) On Fig. 18.1, draw **one** complete wavelength of this radiation. The amplitude *a* is marked for you on the *y*-axis.
- **(b)** Fig. 18.2 shows three types of radiation which make up part of the electromagnetic spectrum.

The range of wavelength of infrared radiation is shown. The regions ${\bf P}$ and ${\bf Q}$ are not drawn to scale.

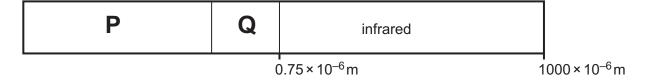


Fig. 18.2

- (i) On Fig. 18.2, draw a vertical line at a wavelength of 15×10^{-6} m and label it **W**. [1]
- (ii) Name the type of radiation in regions P and Q.

P

Q[2]

	(c)	Suggest the effect on carbon dioxide molecules of absorbing radiation with a wavelength of 15×10^{-6} m.
		[1]
		[Total: 6]
19		e properties of iron can be changed by the controlled use of additives to form different alloys ed steels.
	Two	o different types of steel are mild steel and stainless steel.
	(a)	State one use of mild steel.
		[1]
	(b)	Stainless steel is used to make cutlery.
		Suggest two properties of stainless steel that make it better than mild steel for making cutlery.
		1
		2
		[2]

[Total: 3]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon				
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	н	iodine 127	85	At	astatine _				
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium —	116		livermorium -	
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209				
	≥				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium —	
	≡				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	1L	thallium 204				
											30	Zu	zinc 65	48	В	cadmium 112	80	Я	mercury 201	112	Ö	copernicium –	
											59	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -	
Group											28	z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -	
Gre											27	ပိ	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -	
		- 1	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -	
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —	
						_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
						Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	٦	tantalum 181	105	Op
						atc	rek				22	j	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	rutherfordium -	
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -	
	_				က	:=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium -	

71	'n	lutetium 175	103	۲	lawrencium	I
70	Υb	ytterbium 173	102	%	nobelium	1
69	T	thulium 169	101	Md	mendelevium	ı
89	ш	erbium 167	100	Fm	ferminm	ı
29	웃	holmium 165	66	Es	einsteinium	1
99	ò	dysprosium 163	86	ర్	californium	ı
9	Tp	terbium 159	26	益	berkelium	ı
64	gg	gadolinium 157	96	Cm	curium	1
63	Ш	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium -	93	N	neptunium	1
09	βN	neodymium 144	92	\supset	uranium	238
59	Ą	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	느	thorium	232
22	Гa	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).